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Abstrac:t-The problem of a plane crack in an inhomogeneous material with certain elastic
coefficients which exhibit slight variations along the direction perpendicular to the crack is examined
in this paper. A series form solution to the problem is proposed and analytical expressions for the
first two terms of the series are obtained using a Fourier transform technique. Approximate
expressions for the relevant stress intensity factors are also derived.

I. INTRODUCTION

The solution ofthe problem ofa crack in an inhomogeneous material with elastic coefficients
which are varying continuously in space presents enormous mathematical difficulties. Hith
erto, the problem has been considered only for special cases where the deformation is
antiplane or the shear modulus of the material assumes certain specific forms (see, e.g.
Clements et a/.[1] and Dhaliwal and Singh[2]).

In this paper, we examine the problem for an inhomogeneous material which satisfies
the conditions of either an antiplane deformation or plane strain. For the case of an
antiplane deformation, the shear modulus of the material is assumed to exhibit a slight
variation along the direction normal to the crack. For the case of plane strain, Young's
modulus of the material varies in a similar fashion, while Poisson's ratio is taken to be a
constant. A solution to the problem in series form is assumed. Through the use of a Fourier
transform technique, analytical expressions for the first two terms of the series are obtained.
Under appropriate conditions, the truncated series obtained by retaining only the first two
terms of the series solution provides us with a good approximate solution to the problem.
Approximate expressions for the relevant stress intensity factors can then be derived using
this solution. Specific cases of the problem (e.g. where the shear elastic modulus shows a
linear variation and the stresses act uniformly on the crack) are considered.

2. BASIC EQUAnONS

Neglecting the effect of body forces, the equilibrium equations of an elastic material
are given by

(I)

where i,j = 1,2,3; Xi are the Cartesian coordinates and aij are the Cartesian stresses. The
usual convention of summing over a repeated Latin suffix is adopted here.

For isotropic materials, the stresses aij are related to the strains eij by

(2)

where A. and J.l are the Lame constants (J.l is often called the shear modulus), fJ ij is the
Kronecker delta and the strains eij are defined as

1089

SAS 23:8-'\



1090 W. T. ANG and D. L. CLEMENTS

, _~ (all, alii)
(ij - 2 --- + -a

ex! x,
(3)

where /I, arc the Cartesian displacements.
Inverting eqn (2), we obtain

where v is Poisson's ratio and E is Young's modulus.
For convenience, from now on, we adopt the notations

x=x" y = X2, Z = X3' U = u" v = U2, W = U3'

(, O'xy

''") (,.. exy ,,,)
[O'iJ = O'p O'yy O'yz ' and e·· =[ il] eyz e,y e,z .

O'zx O'zy O'zz exz ezy ezz

(4)

2.1. Antiplane deformation
An elastic material is said to undergo an antiplane deformation if u = 0, v = 0 and w

is independent of z. Hence for an antiplane deformation the only non-zero stresses are

OW
O'xz = O'zx = J.J. ax'

From eqn (1) we then have

(5)

We assume that the shear modulus J.J. takes the form

J.J. = J.J.o+ef(y)

(6)

(7)

where J.J.o is a constant, <; is some constant parameter such that 1<;1 « I and f is a given
continuous and differentiable function of y. Substituting eqn (7) into eqn (6), we obtain

(8)

where the prime denotes differentiation with respect to the relevant argument and \72 is the
Laplacian operator.

We propose a solution to eqn (8) in the form

00

W = L t'cPn(x,y).
n=O

From eqns (5) the stress O'yz is then given by

where

(9)

(10)
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(0) _ otPo
(Fyz - Jlo oy

(I) OtPl f )otPo
(Fyz = Jlo::;- + (y::;-.

uy uy
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(II)

(12)

Substituting eqn (9) into eqn (8) and then equating the coefficient of each power of c
to zero, we obtain

(13)

and

(14)

2.2. Plane strain
An elastic material satisfies the conditions of plane strain if u and v are independent

of z and w = O. From eqns (1)-(3) the equilibrium equations for the elastic material are
then

We introduce the stress function tI> = tI>(x,y) defined in such a way that

(15)

a2cf>
(Fxy = - oxoy ; (16)

The stresses as given in eqns (16) satisfy the equilibrium equations (15) exactly.
Now from eqn (3) we have the compatibility of strain condition

(17)

Taking Poisson's ratio v to be constant and assuming that Young's modulus E is of
the form

E= Eo+sh(y) (18)

where Eo is a constant and h is a given continuous and differentiable function ofy, through
the use ofeqn (4) and eqns (16) and (17) we obtain
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If we assume that eqn (19) admits a solution of the form

<

<P = L L;n<pn(X,y)
n= °

then from eqns (16) we may write

_ (0) (I) D( 2)a.,.. - ax.!' + f.ax\" + r.,

_ (Cl) (I) D( 2)cr."y - ayy +£O"yy + £,

where (for i = 0, I)

(20)

(21 )

(22)

Using eqns (4), (16) and (20) and assuming that l£hjEol « I, the displacements u and
v can be written as

au(O) _ I. 2 (0) (0)

ax - Eo [(1- v )axx - v(1 + v)ayy ],

au(l) _ I [ 2 (Il (I) au(OlJax - Eo (I-v )a u -v(1 +v)ayy -h(y)~ ,

av(l) _ I [ 2 (I) (1) av(O)Jay- - Eo (I-v )an· -v(l +v)axx -hey) ay ,

av(O) adO) 2(1+v)
+ _ (0)-a- -a- - -E-- aXY 'x y 0

av( I) au< I) _ 2(1 + v) [ (I) hey) (O)J

oX + 7iY - ------e;;- O"xy - Eo axy .

(23)

(24)

If we are interested in only the first two terms of the series solution (20) then by
substituting (20) into (19) we find that it is only necessary to solve

and

(25)
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(26)

(27)

3. AN ANTIPLANE CRACK PROBLEM

3.1. Statement oj the problem
Consider an infinite elastic material whose shear modulus J.t is given by eqn (7) with J

being an even function ofy. The material contains a crack in the region Ixl < a, y = 0 (where
a is a given positive constant). The material is subject to a small antiplane deformation. An
internal stress (1yz = so(x) (where So in an even function of x) acts on the crack and
the displacements and stresses vanish at infinity. The problem is to determine the stress
distribution in the neighbourhood of the crack. More specifically, we are interested in
calculating the stress intensity factor K defined by

(28)

From eqn (10) K can be written as

(29)

where

K(O) = lim (x-a)II2(1.~,~)(x,O), K(I) = lim (x-a)1/2(1~~)(x,0) (30)
X_lit ..."_(,+

where (1~~) and (1~~) are defined in eqns (II) and (12), respectively.
From the symmetry about the y-axis, the problem described above is equivalent to the

problem of solving eqn (8) subject to the boundary conditions

and

w = 0 for Ixl > a, y = 0

(1y; = so(x) for Ixl < a, y = o.

(31 )

(32)

If we make the assumption that this boundary value problem has a solution of the form of
eqn (9) and if we are interested in only the first two terms of the series solution (9) then
from eqns (9)-(14) and (31) and (32) the problem can be replaced by a set of two problems.

Problem 3.1. Solve eqn (13) subject to

and

4>0 = 0 for Ixl > a, y = 0

u~~) = so(x) for Ixl < a, y == O.

(33)

(34)
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cPI = 0 for Ixl > a, y = 0

(j~;) = 0 for Ixl < a, y = O.

(35)

(36)

(37)

I foocPo = - Em exp (-ey) cos (ex) de
n 0

where E(~) is defined as

Em = f r(t) Jo(et) dt

(38)

(39)

where Jo(x) is a Bessel function of order zero and ret) is a function yet to be determined, it
can be readily verified that eqns (13) and (33) are satisfied.

From eqns (11), (38) and (39) and interchanging the order of integration, we obtain

J1. fa d foo(j~~)(X, 0) = - -.E. ret) -d JoW) sin (ex) de dt.
n 0 x 0

Using the results (see Watson[3])

(40)

for 0 < x < t

for t < x < r:fJ
(41 )

it follows that eqn (40) becomes

J1. d fm," (x, a) ret) dt
(0) __ -.E._

(jy: (x, 0) - d (2 2) 1/2 .n x 0 x -t

Hence from eqn (42) condition (34) reduces to

d fX ret) dt n
-d (2 t2)1/2 = - -so(x) for Ixl < a.

x 0 x - J1.0

Equation (43) can be inverted to obtain

2t i' so(u) du
ret) = - - (2 2)1/ 2 .

J1.0 0 t -u

(42)

(43)

(44)

From eqns (30) and (42) together with integration by parts, the stress intensity factor
K(O) can be written as
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K(O) = ILo r(a) .
7t ..)(20)

The value of r(o) can be evaluated either analytically or numerically using eqn (44).

3.3. Solution ofProblem 3.2
Substituting eqns (38) and (39) together with

1100

<PI = - (F<e)+G(~,y)) exp (-~y) cos (~x) d~
7t 0
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(45)

(46)

where F(~) and G(e,y) are to be determined, into eqn (35) we obtain (after some sim
plification)

oG ~
-;- - 2~G =-E<e)f(y).
lJy ILo

The general solution of eqn (47) is

O(e,y) =;0 E(,) exp (2,y) [r f(t) exp (-2,t) dt+CJ

(47)

where C is an arbitrary function of e. Since we require the displacements and stresses to
vanish at infinity, the arbitrary function C is set to zero. Thus

e fYO(e,y) = -E<e) exp (2~y) f(t) exp (-2~t) dt.
ILo

Ifwe choose

where v(t) is to be determined, condition (36) is satisfied.
Using eqns (12), (4]), (42), (46) and (49), we obtain

(48)

(49)

Hence from eqns (43) and (50) condition (37) is reduced to

d IX v(t) dt 100

oGI 7tj(0)
-d (2 2)1/2 = -0 cos (ex) d, + -2-S0(X) for Ixl < o.

x 0 x -t 0 Y y-O ILo

Inverting eqn (5]) and using eqn (44), we obtain

(5])
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2t if i'" cos (~u) aG I' .r(0)
vet) =- ",' -~-I, :1 d~ du - ··-r(t).

n I! 0 (I - II) Col' I" 0 Ilo
(52)

From eqns (50) and (52), the stress intensity factor K( I) as defined in eqn (30) becomes
(after integrating by parts)

Ilo I' I" iCXc

oG I+ - Im+ (x-a) /. -0 cos (~x) d~. (53)
n x-a 0 y y= 0

Provided that the integrals in (53) exist and can be evaluated, the value of K( \) can then be
found.

3.4. Uniform shC!ar
If we assume that a uniform shear acts on the crack, that is so(x) = -so (constant),

from eqn (44), r(t) is given by

sont
r(t) =

Ill!

and hence from eqn (39) and the results (Watson[3])

E(~) becomes

E(~) = son aJ\ (a~)
Ilo ~

(54)

(55)

(56)

where J\(x) is a Bessel function of order one. From eqns (45) and (54) the stress intensity
factor K(O) is given by

K(O)=~.
J(2a)

Consider now the following cases.

(57)

Case 3.1 : f (y) = klyl (k is a positive constant). From eqns (48) and (56) we have (for
y ~ 0)

and hence

oG sank aJ I (a~)

oy = - 21l~ -~-

Using eqns (53) and (59), the stress intensity factor KI I) is

(58)

(59)



On some crack problems for inhomogeneous elastic materials 1097

(60)

From eqns (29), (57) and (60) and neglecting 0(c 2
) terms, the stress intensity factor K for

this particular case is given by

(61)

With a proper interpretation of the parameters involved, result (61) may be seen to be
consistent with an approximation to a similar stress intensity factor obtained by Clements
et a/.[1]. Result (61) clearly indicates that for this particular type ofinhomogeneous material
with shear rigidity which increases with Iyl the stress intensity factor is smaller in magnitude
than the corresponding factor for a material with constant shear modulus Jlo. Furthermore,
as the value of Jlo decreases in magnitude, the difference between these stress intensity
factors becomes more pronounced.

Case 3.2: fey) = k exp (-~lyD (k and ~ are positive constants). From eqn (48), we
have (for y ~ 0)

Differentiating eqn (62) partially with respect to y, we obtain

oG k~~

oy = Jlo(~+2~)E(~) exp (-~y).

Now from eqn (63)

(62)

(63)

(64)

The function E(e) as given in eqn (56) is finite along the interval 0 ~ e < 00. Its asymptotic
behaviour for large ~ then indicates the last integral in eqn (64) is bounded for x > a. Hence
from eqns (53) and (63) (after interchanging the order of integration)

(65)

Using the results (Watson[3])

(66)

eqn (65) together with eqn (66) gives

(67)

The integrand of the integral in eqn (67) behaves as 0(1/{2) for large ~. Hence the infinite
integral converges slowly. To speed up its convergence, we rewrite it as
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Fig. I. Antiplane problem: variation of /loKI l)jSrJc against a for the case where

/l = /lo+6kexp (-aly!)·

The first integral on the right-hand side of eqn (68) has an integrand which diminishes
rapidly as ~ increases and the second integral is given by I/n (see Watson[3]). Thus from
eqn (68) the stress intensity factor K(I) can now be easily evaluated using an ordinary
numerical integration scheme.

In Fig. I, we plot JloK( 1)/sok against ex for various values of a. From the graphs, it is
clear that as ex increases K( I) increases. Also, for a given value of ex, a larger value of a gives
rise to K(I) of higher magnitude. The results clearly indicate that for a material with shear
modulus Jl == Jlo+Ek exp (-exlyl) the stress intensity factor K is larger than the cor
responding factor for a material with shear modulus Jlo.

4. A PLANE CRACK PROBLEM

4.1. Statement of the problem
In this section, we consider the problem of determining the stress distribution in the

vicinity of a straight crack in an infinite isotropic material which satisfies the conditions of
plane strain. Poisson's ratio v of the material is assumed to be constant while Young's
modulus E varies as in eqn (18) with h being an even function of y. On the crack, which
lies in the region Ixl < a,y == 0, we require the stresses (Ix)' and (lyy to be such that (Ix}' == 0
and (lyy == Po(x) (where Po is an even function of x). It is also required that the displacements
and stresses vanish at infinity. Of particular interest to us here is the calculation of the stress
intensity factor K{ defined by

K{ == lim (x - a) 1/2(1n(x, 0).
x-a+

From eqn (21), eqn (69) may be rewritten as

(69)
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K[ = K~0)+eK~I)+O(e2)

K~O) = lim (x-a)I/20'}~)(x, 0),
.\,-0+

K~l) = lim (x-a) 1120'}})(x,0).
x-a+

1099

(70)

(71)

Due to the symmetry of the problem about the y-axis, the problem may be posed as a
boundary value problem which involves solving eqn (19) subject to

and

0'xy = 0 for all values of x, y =0

O'yy = PO (x) for Ixl < a, y == 0

v = 0 for Ixl > a, y == O.

(72)

(73)

(74)

If the first two terms of eqn (20) can provide us with a good approximation to <I> then from
eqns (21)-(27) and (72)-(74) this boundary value problem may be replaced by Problems
4.1 and 4.2 below.

Problem 4.1. Solve eqn (25) subject to

and

and

O'i~ =0 for all values of x, y = 0

O'}~ = Po(x) for Ixl < a, y = 0

v(O) = 0 for Ixl > a, y = O.

Problem 4.2. Solve eqn (26) subject to

O'i~) = 0 for all values of x, y = 0

O'}~ == 0 for Ixl < a, y = 0

V(I) = 0 for Ixl > a, y =O.

Note that O'tJ, O'~J and v(1) (for i = 0, I) are defined in eqns (22) and (24).

(75)

(76)

(77)

(78)

(79)

(80)

4.2. Solution of Problem 4.1
It can be readily verified through direct substitution that eqn (25) admits solution of

the form (see Sneddon[4])

2 r'" P(~)
<1>0 = i Jo er (1 +~y) exp (- ~y) cos (~x) d~

where PW is yet to be determined.
From eqns (22)-(24) and (81), we obtain

(81)
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2 rcc

a~~) = -; Jo pm (I +¢y) exp (- ¢y) cos (¢x) d¢

2 rx

a~~) = -; y Jo ¢pm exp ( - ¢y) sin (¢x) d¢

2(l+v) ('Xl cos (~x)
veO) = nE

o
Jo P(~)(2(l-v)+~y) exp (-~y) ~ d¢.

(82)

(83)

(84)

Note that the stress a~~.> as given by eqn (83) satisfies condition (75).
Through the use of eqns (76), (77), (82) and (84) and performing a similar analysis as

in Section 3.2, pm is found to be

pm = ~f R(t)JoW) dt

where

i
l Po(u) du

R(t) = -t (2 2)1/2'° t -u

The use of eqns (71), (82), (85) and (86) together with integration by parts yields

4.3. Solution of Problem 4.2
The function <I> 1 defined by

2 icc<I> 1(x,y) = - G(¢,y) exp (-~y) cos (~x) d¢
n °

is a solution ofeqn (26) if the function G(~,y) satisfies

(85)

(86)

(87)

(88)

The general solution of eqn (89) is

G(~,y) = Gp(e,y)+A +By+C exp (2~y)+Dy exp (2ey)

where A, B, C and D are arbitrary functions of ~ and Gp(~,Y) is given by

(90)

Gp(~,Y)= -exp(2~y)rW(~,t)texp(-2~t)dt+yexp(2~y)rW(~,t)exp(-2~t)dt

(91 )

where W(~,y) is defined by
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fi(~) [jJ' ]W(~,y) = EoO-v) 2e(l-2v) h(t) d/+(ey-2v-l)h(y) .

1101

(92)

Since we require the displacements and stresses to vanish at infinity, it is necessary to
set the function C and D to zero. The use of condition (78) yields

aG,,! _
A~-B=-a··· -eG/,(~,O).

y y¥o

If we assume that the stress (j~~) is such that

(j;~ = p(x) on y = 0

(93)

then from egn (22) and through the use of a Fourier inversion theorem (in Sneddon[4]) we
obtain

(94)

where y(e) is defined by

y(e) = - i'" p(u) cos (eu) duo

From egns (93) and (94), B is given by

(95)

To recapitulate, a solution to eqn (26) which satifies condition (78) may be given by

2 r~ [- y(e) - (y(~) OG,,\ ) ]
<I>, = nJo G,,(e,y)+y- G,,(e, 0)+ -~-- oy y=o y

x exp (- ey) cos (ex) de. (96)

The task now is to determine y(e) which satisfies the remaining two boundary conditions
of the problem, namely egns (79) and (80).

Through the use of eqns (22), (24) and (96), we obtain

where

21""(j}~(X, 0) = - - y(e) cos (ex) de
1t 0

(97)

(98)
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If we substitute
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Z(~) == _ 2h(0) _ (2v-I)h'(~).
£o~ £0(1- v)~

y(~) == - ~ [xm+Z(~)j1(~)- f: S(t)JoW) d1J

(99)

(100)

(l01)

where Set) is to be determined, into eqn (97) then condition (80) is satisfied. Together with
eqn (98), condition (79) yields

d IX Set) dt
-d (2 2) 1/2 == I\.(x) for Ixl < ax 0 x -1

where

nh(O) (2v-l)h'(O) (a R(t) dt (00
I\.(x) == E--;Po(x) - £0(1- v) J (12 _ X 2) 1/2 + Jo ~X(~) COS (~X) d~.

Inverting eqn (102), we have

2t it I\.(u) du
Set) == - (2 2) 1(2 .n 0 1 -u

(102)

(103)

(104)

From eqns (71), (86), (98), (WI), (103) and (104) together with integration by parts,
we obtain

(I) 2a [iaioo
~X(~)

K J == 2 / (2 2)1 / 2 cos (~u) d¢ du
n v (2a) 0 0 a - u

I iOO

+ - lim (x-a)I/2 ~Xm cos (~x) d~. (105)
'It x-a+ 0

4.4. Uniform pressure
If a uniform pressure Po(x) == -Po (constant) acts on the crack then eqn (86) gives

n
R(t) == - Pot

2

and from eqn (87) the stress intensity factor K}O) is

Substituting eqn (106) into eqn (85) and using eqn (55), we obtain

(106)

(107)
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We now consider the case where Young's modulus Eis given by

E = Eo+eklyl

where k is a positive constant.
From eqns (91) and (92) and (108) and (109) and differentiating, we obtain

3 -,(} Gp _ 0
oy3 y=o - .

Using the results (Watson[3])

1103

(108)

(109)

(110)

(Ill)

and from eqns (99), (105), (106) and (110), the stress intensity factor K}') obtained is found
to be

Hence from eqn (69), neglecting 0(e 2
) terms, the stress intensity factor K1 is given by

-J(~) [ -3eka _ eka (2V-l)]
K1 - 2 Po 1 7tEo 7tEo (I-v) .

(112)

(113)

The stress intensity factor (113) for the plane case indicates behaviour which is qualitatively
consistent with the corresponding result (61) and it agrees with that obtained in Rogers
and Clements[5] for the case v = 1/2. That is, the stress intensity factor for a crack in a
material with Young's modulus as given in eqn (109) is less than the corresponding factor
for a material with Young's modulus Eo. The magnitude of the difference between these
two stress intensity factors decreases as Eo increases. In addition, since for compressible
materials Poisson's ratio v satisfies 0 < v < 1/2, it follows that from eqn (113) the magnitude
of the difference between the stress intensity factors for the homogeneous and inhomo
geneous materials is bounded below by 2aJapotk/(J27tEo) and above by
3aJapoek/(J27tEo).

S. SUMMARY

The analysis given in this paper provides us with a means to assess the effect of
inhomogeneities on the stress intensity factors for both antiplane and plane crack problems.
We assume that the variation of the shear modulus or Young's modulus is slow along the
direction perpendicular to the crack. A series form solution to the problem is proposed and
the first two terms of the series are obtained by using a Fourier transform technique. As
seen in Sections 3.4 and 4.4, for simple variation of this modulus, simple analytical formulae
for the first two terms of the stress intensity factors can be obtained when the stresses acting
on the crack are constant. If the variation is more complicated, it may still be possible to
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reduce the expressions for the stress intensity factors to some simpler forms which can then
be evaluated numerically (see case 3.2 in Section 3.4). It may be possible to extend the
analysis given here to the case where the variation of the modulus is parallel to the
crack. Nevertheless, the analysis may become more involved and complicated than the one
presented here and it may not be possible to obtain explicit expressions for the stress
intensity factors.
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